
_________  
-- - -  -

(2 .2 ) and neglect the second te rm in Eq. (2 .5). These approximations are
mathematically valid at small wettin g angles and y ield

F0 = 2~~aY , as 0 - -
~ 0 (2.6)

Although the attractive force in Eq. (2. 6) remain s finite as the wetting angle ap-
proaches zero, the pressure differential approaches negative infinity. This implies
that the liquid is under considL-ral le tension at smal l wett ing angles. This does
not seem physically possible, although it is not discussed in the texthooks present-
ing this derivation .

At finite wetting angles , both the attractive force and the pressure diffe rential
are angle dependent. To determine the dependence of the pressure differential on
the wetting angle, a dimensionless pressure is derived by substituting the radii of
curvature from Eqs. (2.3) and (2 .4) into Eq. (2 .5) and factoring a term V/ a :

cos O cos O( a / y )~~P = 1-  cos O 
- 

c o s 0 + s i n O - I  . (2.7)

This dependence of the pressure differential on angle is plotted in Fig. 2.2 . At
small angles the pressure diffe rential goes to infinity as & 2 . At 0 = 53. 1° the
pressure differential vanishes because the two principal radii of curvature are
equal and opposite.

Similarly, the two fo rce terms in Eq. (2. 2) can be written in dimensionless
fo rm to bring out the angular dependence of these terms. The first component of
the attractive force from the pressure diffe rential , becomes

F~ /2~~aV ( cos O± s~~0 - 1) 2 

[1-~~os0 
- cos9+sin 9 - 1]  . (2.8)

• The other term FT , from the direct pull of the liquid , is

FT / 2 iT a V = sin2 0 . (2 .9)

17 
-

~~TJ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



- - ---- —,-, -‘--,-•---•• -‘- — - -- -c-  
~~~~~~~~~~~~~~~~~~ 

- -
~

100 I

8 0 —  —

6 0 —  —

a)
3

a,

a)
>

4 0 —  -H
4)

2 0 —  —

0 1 I _______ • ! II 
0 10 20 30 40 50 60 -

Wetting angle , 6 (degrees )
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These forces are plotted as functions of the wetting angle m Fig. 2 . 3. At small
angles, the pres sure term dominates and approaches the li m itin g value given by
Eq. (2. 6). As the wetting angle increases , contributio ns from FT become non -
negligible. The two term~ are equal at 3 3• 5 0  and the pressure term vanishes
at 5 3 . 10 .

To solve for the attractive fo rc e a~ a 1unciiu of sphere size , the following
approach is taken: First , a “critical wetting angle” Oo is determined at which
the pressure differential equals atmospheric pressure (1. 01 x 106 dyne/cm2)
using the surface tension of \vatc r ~ = 70 dyne/cm2. Next 00 is substituted into
Eqs. (2 .3) and (2 .4) which along with Eqs. (2.5) and (2 .2) yield the attractive
force. The critical wetting angle 80 is plotted as a function of the sphere radii
in Fig. 2.4. The two components of the attractive force and the total attractive
force F = F~ + FT are plotted in Fig. 2. 5. Tabular results are presented in
Table 2 . 1.

• The above derivation makes h e  reasonable and convenient app roximations of
a zero contact angle and a circular arc surface. In addition , the sagging of the
liquid due to gravity and the buoyant force of the liquid are neglected, as is valid
at small sphe re sizes.

It is seen from Table 2 . 1 and Fig. 2.4 that the critical wetting angles for
small sphe res are quite large , approachin g the limiting value of 53.1° . In this
size ran ge, the att ractive fo rce presented in Fig. 2.5 is dominated by the direct
surf ace tension term F7. The two components of the attractive force are equal

- 
- near the sphe re radius of 2~ rn ( Oo = 33.5°) and the pressure differential term

- - F~ dominates at sphere radii larger than this value. It is interesting to note that
the total force F = F~ + FT is approximately equal to the naive textbook value
given in Eq. (2. 6). This agreement is regarded as accidental.

Should the particles be wet to angles greater than ~~~ the cohesive fo rces
decrease as is apparent from Fig. 2 .2. Larger forces than those presented in
Table 2.1 and Fig. 2.5 would he obtained at smaller angles if large negative
pressure s (tensile forces) are allowed in the l iqu i d . There is no discussion of
such tensile forces in the literature on sphe re cohesion except for a brief state-
ment in Ref. 9a where it is •-~tatcd that this may be a limiting effect. A similar

19
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-r able 2.1. The attractive force 1- and components of the attractive force F ,
from the pressure differential, and FT . from the direct pull of the liquid , for
several sphere radii a .  The critical wetting angle is 00.

a(~ m)  80 (degrees) F~(dYne) FT (dyne) F (dyne)

0. 05 52.1 3.40 x 10~~ 1.37 x 10 3 l .40 x l 0 3

0 . 2 5  4 8 . 4  7 . 6 7  x 6. 15 x 6. 92 x

0.50 44.9 2.70 x 10 3 l .10 x 10 2 l .37 x 10 2

2.5 31.2 3. 80x 10 2 2 . 9 5 x l 0 2 6.75 x l0 2

5.0 24.6 1.02 x 10 1 3.81 x 10 2 1.40x 10 1

25.0 12.5 7. 74 x 10
_ i  

5. 15 x i0 2 8.26 x l0 1

50. 0 9 . 0 7  1 . 7 1  5 . 4 6  x 10 2 1.76

-1

2 -~ 
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effect occurs with very small capillary tubes where negative pressures have

been observed. 10
~~

2 However in the capillary tubes, the tensile state of the
liquid is a metastable state and is lost when a bubble is nucleated. Neve rtheless

such metastable states occur regularly in nature as is evidenced by sap in the

xylem tubes of trees that are over 10 m (34 ft .)  in height.’3 Hence if wetting

angles less than the critical angl& -  E)~-~ occur, the liquid will be under tension and

in a metastable state .

It may be very difficul t to for m a liquid bridge between particles even at
angles greater than 

~0 unless one sta rts with the particles completely im-
mersed in the liquid. If the particles are initially dry, liquid may not condense
at the points of contact. The difficulty in condensation here is analogous to the
well-known difficulty in the homogeneous nucleation of small water drops or
small bubbles. It may be possible to fo r- n liquid bridge s between the particles
if the pa rticles are initially immersed and liquid is withdrawn from the sample.

- 
- In this case sudden evaporation of the liquid may occur when the critical angle

is reached .

B. Electrostatic

The electrostatic attraction of charged spheres is complicated by the facts
that the mechanisms for charging particles are not well understood and the loca-
dons of the cha rges on , or within , the particles generally are not known.’4’ 15

Only with conductin g spheres that are free of contamination can predictions be
made with any degree of confidence. As a known example , consider the con tact

of spheres of two diffe rent metals having differing electron work functions. Elec-
tron s are transferred from one sphere to the other until the Fermi levels arc

ali~ ied (i.e. , as in a thermocoupl(’). 14 Excess electrons on a conducting sphere

spatially isolated fro m other material surfaces , are un iformly distributed over

the surface. However , the presence of other particles , charged or not, will per-

turb this uniform distribution.

With dielect ric particles or contaminated metallic particles, charging often
involves the transfer of ions absorbed on the surfaces as well as the transfer of
electrons. The ion-transfer mechanism is very dependent on complexities of the
surface suc h as past surfacc treatments and the relative humidity of the surround-

ing atmosphere. To predict the charge transfer between bulk samples of various

24
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materials, researchers have attempted to set up triboelectric series of materia:[s
analogous to electrochemical potential series. However, such series are not re-
producible, with series set up by different researchers being very dissimfar and
lacking agreement on the positions of materials in the series.14

Ignoring the mechanism for charging, the equilibrium amount of charge on an
isolated sphere can be derived from thermodynamic considerations .1 A spatially
isolated sphere, of radius a with an excess or deficiency of n electron s uniformly
dist ributed over its surface, has an electrostatic potential energy

e = (ne)2/ 2 a  , (2.10)

where e is the charge of an electron. Assuming a Boltzmann distribution, the
probability that a sphere has n excess or deficient electrons is

f = e~~ [- (ne)2/2 akT
] ~~~ 

e,~ [-  
(ne?/ 2 ak T ]  , (2. 11)

where k is the Boltzmann colistant and T is the temperature. The mean magni-
tude of n is

(n) = (2akT / TT e2 ) / . (2. 12 )

Values of (n) are listed in the second column of Table 2.2 for several sphere
radii .

Rather than attempting to specify the details of the distribution of the charge
on or within the particle, the following model problem is conside red: With a spa-
tially isolated and uniformly charged sphere, the elect ric field outside of the
sphere appears as though the charge is concentrated at the center of the sphere.
Hence as a first approximation for a charged sphere in contact with an uncharged
sphere, the excess charge is considered to be positioned at the center of the
charged sphere. If the spheres both have radii equal to a, the charge ne in the
first sphere induces an image charge of magnitude - ne/2 at a distance a/2 from
the center of the second sphere. This situation is sketched in Fig. 2. 6. (The mag-
nitude and position of the image charge is appropriate for a conducting sphere, with
dielect ric spheres having a smaller magnitude image charge at a different position. )
The attractive force between the charges is

25
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Table 2.2. Equilibrium number of excess or deficient electron charges (n ),
sphere potential c1, electric field E , and attractive force F for several sphere
radii, a. Fm~~ is the force obtained for an electric field of 3 x ~~ V/cm at the
sphere surface.

a ( M m) (n)  1’(mV) h (V/cm) Feq(l0~~
2dYne) F~~~ (dyne)

0.05 0. 68 19. 6 3910 947 5.57x10 8

0.25 1. 6 6  9. 55 382 226 1., 39x 10 6

0 . 5 0  2 . 3 7  6 . 8 2  136 1~~~ J 5.57 x 10 6

2. 5 5.34 3.07 12.3 23. 4 1.39x 10 4

5.0 7.54 2.17 4.34 11.6 5. 57x 10 4

2 5 . 0  16. 9 0. 9 1  0 . 3 9  2 . 34 1.39x 10 2

50.0 23 .9 0. 69 0.14 1.17 5.57x 10 2

- V.i
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f J” —ne/2 V ne
L S • -

Fig. 2 . 6. A charge of magnitude ne at a distance of 2a from a conducting
sphere of radi us a , ind uces an image charge of magnitude -nc/2 in the
conducting sphere .
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F = ~ . (2. 13)

— This model is perhaps most valid for conducting spheres coated with a thin dielec-
tri c layer. For conducting spheres where an insulating layer prevents equilibration
of the excess charge, the result in Eq. (2 . 13) is the first term in a series gener-
ated by alternately placing image charges in the two spheres to satisfy boundary
conditions. 16

The force given by Eq. (2.8) should be valid as an order-of- magnitude esti-
mate for many seemingly different cases. Notice that if the spheres have equal
and opposite charges positioned at the sphere centers , the factor of 2/9 in Eq.
(2. 13) is replaced with unity. Larger forces than those indicated by Eq. (2. 13)
may be obtained with dielectric spheres having oppositely charged surface ions
near the point of contact. However, the ions themselves experience large attrac-
tive forces in this case and the large forces may be ameliorated by the ions being
torn from the surfaces.

Using the equilibrium amount of charge in Eq. (2. 13), attractive forces are
given for several sphere radii in the third column of Table 2. 2. These attractive
forces are many orders of magnitude smaller than either those given in the previ-
ous section for the liquid-bridge mechanism or those derived in the following sec-
tion for molecular attraction. Hence for electrostatic forces to be important, the
magnitude of the charge must be much greater than the equilibrium value.

tinder favorable circumstances such as in a corona discharge, spheres can
be charged far in excess of their equilibrium values where as many as one thou-
sand excess electrons arc observed on micron-sized particles.1’ 14 To search
for a mechanism to limit the ultimate possible excess charge, the electrical poten-
tial of the particle and the magnitude of the electrical field at the particle surface
were examined. Values of these quantities are listed in the fourth and fifth columns
of Table 2 .2 for sphe res having equilibrium numbers of electrons. The equilibrium
value of the electrical potential is in the millivolt range for all particle sizes and,
hence, is not expected to prevent increases in the charge under favorable circum-
stances. On the other hand, the electric field at the sphere surface is quite large
for small spheres. Attempts to increase the charge on small spheres beyond the
equilibrium value will be limited by air breakdown near the sphere surface.

2S
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To estimate the maximum possible electrostatic forces, it is assumed that
the sphere charge is limited by a value of 3 X 1O~

hl V/cm for the electric field at
the sphere surface. Solving for the charge required to produce this field and sub-
stituting the result into Eq. (2. 13) yields the values in the sixth column of Table
2.2 labeled Fmax • These values are still approximately one order of magnitude
smaller than the liquid-bridge forces obtained in the previous section. However,
at the largest particle sizes, the maximum electrostatic forces become compar-
able to molecular forces.

Such highly charged particles are expected to be the exception rather than the
general rule. In a large sample containing many particles, binding from the elec-
trostatic mechanism should occur only for relatively few particles.

C. Molecular Attraction

The molecular attraction between spheres is viewed two ways:2’6 First, a
model potential such as the Lenard-Jones potential is integrated over the volume
of the spheres.17 Differentiation yields the cohesive force. Secondly, an effec-
tive area of contac t is derived from geometrical considerat ions. This effective
area, when multiplied by the material tensile strength, yields the force of attrac-
tion. The Lenard-Jones potential used in the first method is strictly applicable
only to nonpolar molecular solids having van der Waals bonding. However, it can
be used as a mathematically convenient model potential for order-of-magnitude
estimates of the cohesive force between other types of materials. Additionaily,
the Lenard-Jones potential is used to estimate the coating thickness required to
saturate the attraction so that the cohesion is determined by the coating rather
than the core.

Consider two spheres, one of radius a and the other of radius b , having a
distance L between sphere centers. The Lenard-Jones potential between volume
elements dV1 in the first sphere and d1~ in the second sphere is

d6 U = - .
~~~~ dV1 dV~ , (2. 14)p

where p is the distance between the volume elements and ~ is a material-dependent
constant. Integrat ion over the volume of the first sphere yields
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d3U = -4~~a 3
~~d~~/ 3 (r

2 - a2)
3 

, -4~~a
3
~~d~~/3 (r

2 
- a2)

3 
(2 15)

where r is the distance of the volume element d\~ from the center of the first
sphere. Integration over the volume of the second sphere yields the potential 

. -

between the two spheres:

- - 
2 a3 ( L - b )  

- 
( L + b )  

+ 
1 f L - b - a- 

~ ~~~ ~ a2 [( L ~~b)2~~a2] a2 {(L b)2 2 ~~~~~~ ~ L - b +a

1 I L + b - a \  1 1—Ln i I —  +- 

2a 3 \ L+b+a / L [ ( L - b~~~- a 2 L{(L+b)2 - a 2 
. (2. 16)

Differentiating with respect to L and collecting terms yields the attractive force
between spheres:

3 3
~~ _ 32 2~ a b L£ T p  2 2 2 2  2 2 ~~[ ( L + b  - a )  - 4 b  L ]

The force given in Eq. (2 . 17) dive rges at L = a + b because we have neglected to
include a repulsive term in the potential. Rather than including a repulsive term,
the divergence is avoided by defining sphere contact as occurring when L = a + b
+ O, where 6 is a lattice spacing.

The result given in Eq. (2. 17) is next used to calculate the force between two
coated spheres each having core radius a and total radius b = a + t , where t is
the coating thickness. For coated sphere s the attractive force is the sum of the
forces between cores, between cores and coatings, and between coat ings. The
force between cores is

_ 3 2 2  a6
F — — 

~~ 3 ‘
~ 2 (2. 18)L [LL _ 4 a z ]

where 
~ li is the potential parameter for the core material. The force between

each core and the coat ing on the other sphere has potential parameter 
~l2~ 

‘This
force is equal to the force between the core and a homogeneous, solid sphe re of
the coating material with radius b minus the force between the core and a sphere
of coating material having radius a :
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64 2 a3b3 L 64 2 a6
Fab = 

~5_ 1T 
~

12 [ ( L2 +b 2 2 )2 4b2 L2 ] 2 
- 

~~~~ ~12 L3[L2 - 4 a 2 ]2

(2 .19)

The force between coatings equals the force between homogeneous, solid spheres
of the coating material of radius b minus the force between cores of coating ma-
terial and minus the force between cores and coatings:

6 3 3
F 3 2 2  b 6 4 2  a b L
b,b — 

3 2 2  

22 L3[L 2 - 4 b 2 ] 2 
- 

T 
17 22 [( L 2 +b 2 a2)2 -4b2 L2 ]2

+ ~~
‘ 

~22 
a 

2 2 (2 .20)
L3 [L 2 -4a  ]

Summing Eqs. (2. 18), (2 . 19), and (2.20) yields the force between coated spheres:

F 32 
17

2 (~ ii 
- 2 

~1 2 + 
~22~ L3 [ L2 -4  a2 12 + 

32 
17

2 
~22 L3 [ L2 -4 ~~

+ 
64

17
2 (~ - 

~22~ [(L2 + b2~~ a2 )2~~ 4b2 L2 ]2 (2.21)

To examin e the reduction in the attractive force from the coating, consider a
coati ng having potential parameter 

~22 = 
~~~• 1$~~ . The relative potential parame-

te r is 
~ 12 = (

~ li~ 22 )
1/2 = 0.3l6~~ i. To obtain the effect of the coating thick-

ness t , we take b = a + t and L = 2a + 2t + 6 with 6 = 4 x 10-8 cm. The
attractive force between two coated spheres using these values in Eq. (2.21) is
plotted as a function of coating thickness in Fig. 2.7. The attractive force has a 

-

minimum value for coating thicknesses near 40 A. For thicknesses greater than
this value , the att ractive force increases due to the increased sizes of the spheres.
The continuum model used in this calculation is not valid for coating thicknesses
less than about 1OA . Nevertheless, the rapid decrease of the attractive force for
small coating thicknesses obtained from the continuum model indicates that only
a few molecular layers of coating are necessary to saturate the forces so that the
force is determined nearly entirely by the coating rather than the core.

:31
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To obtain numerical values for metallic spheres coated with nonpolar
dielectrics , we take 

~22 C L /&, where ~2 is the atomi c volume of the atoms
in the coating and CL is the constant in the London force equation for the force
between two spherically sym metric atoms.2 ’ 17 This constan t is evaluated from

CL = 3a2 h t i / 4  , (2 .22)

where a is the atomic polarizability and h~ ~s the electronic excitation energy of
- -8 3 -24 3the atoms. As typical values we take ~ = (4  x 10 cm )  , a = 10 cm , and

h~ = 1.60 x 10 11erg (10eV). These va~ucs yield

~22 ~ 2 . 9 x 1 0 15 
~rg . (2.23)

Assuming that the coating is sufficientl y thick to ~-aturat e the att ractive force , this
value, along with L = 2 b + 6, where 6 = 4 x lO~~ cm for spheres in contact , yields
the attracti ve force

F = (1 .49  dy n e / c m) L I  . (2 .24)

Values of the force for several sphere radii ~irc presented in Table 2 . 3.

A second way of viewing the molecular attraction between two sphe res in con-
tac t is fro m a materials strength poin t of vicw .2 ’4 In this method the spheres are
aga in viewed as being homogeneous and continuous , rather than atomic. The hypo-
thesis is made that the distinction of one sphere surface from the other is lost if
the surfaces ar e within a distance of approximatel y one lattice spac ing, i.e. , about
4 l0~~ cm . Referrin g to Fig. 2 . 8 , it is seen that the distance h between sphere
surfaces is approximately h ~ p 2 / a , where p is the distance from the line con -
nectin g the sphere centers and a is the sphere radius. The effective area of con -
tact between spheres is

A = = 17ah . (2 .25 )

Multip lying this area by th c tensile strengt h o~ ~f the material y ields the cohesi ve
force

F = 
C h . (2.26)

:3~3
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Table 2.3. Molecular attractive fo rces fo r spheres of various radii , a, coated
- with a nonpolar , dielect ric coating.

a(Mm ) 0. 05 0. 25 0. 50 2 .5 5.0 25 .0 50. 0 
-

F(d yne) 7.4x10 6 :3.7x10 5 7.4x 10 5 3.7x10 4 7.4x 10 4 3.7x10 3 7.4 x1c13
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Fig . 2 . 8. Separation h of the sphere surfaces at a distance p from the
line between sphere centers.
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For nonpolar m olecular solids the two methods yield equivalent results.
The attractive force , derived from the Lcnard-Jones potential presented in
Eq. (2 .24), imp lies a tensile strength o~ = 1.2 x ~~ dyne/cm2 (170 psi). This
value is approximately what one would expect for a molecular solid . The tensile
strength of metals is approximatel y 100 times this value and implies an approxi-
mately 100 times greater attractive force.

Intuitively the cohesive force between oxidized-metal spheres is expected to
be less than the force for pure metals. With metal oxides or with other ionic and
covalent solids , estimates of the attractive force are complicated by uncertain-
ties in the tensile strength of these materials. Tensile strengths of bulk ionic and
covalent solids are sensitive to small cracks which are comparable in size to the
smallest sphere sizes under cons~ueration . LI cracks arc- not important with small
spheres and theoretical tensile strengths are used , the cohesive force is as large,
or greater than , the cohesive forc e for pure metals. Instead , it is expected that
dielectric coatings are sensiti ve to the crystallograp hic orientation of the coatings
on the two spheres. This misalignment of the lattices may result in a decreased
cohesive force analogous to decreased tensile strengths in bulk , dielectric solids
from small cracks.

— 

Additionally, malleability may fa vor the cohesion of pure metals due to in-
creases in the effective area of contact caused by deformation aroun d the point of
contact under the action of molecular attraction .1 When two elastic spheres are
pressed togethe r with a force F, there is a flat area surrounding the point of con-
tact having radiu s~~ —

p = 0.88 [ Fa/E i
h/3 

, (2 .27)

where E is the elasticity of the- sphere material. Using the attractive force given
- 11 2 c 7 2 -by Eq. (2 .2 6) and using E 10 dyne/cm and ~ 10 dyne/cm as typical

values for a metal , the are a of contact is

A = (2 .84 X 10 6 ) a413 
, (2 .28)

where the units of A are cm 2 for a expressed in cm. With a = 2 .5 x ~~~ m, Eq.
(2. 28) yields 4 .5 x l0 11 cm 2 which is comparable to the effective area of ~ . 1
x 10 11 cm 2 given by Eq. (2 . 15). These values indicate that the effective ~rea of

_______________________ 
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contact for a pure metal , or for a thin oxide-coated metal , may be enhanced
compared to dielectrics and thick oxide coatings. The continuum model is not
thought to be suffic~cnt ly accurate to estimate the amoun t of enhancement.

D. Summary and Conclusion s of Cohesion Study

Cohesi ve forces from the various mechanisms discussed in the preceding
section s a re presented graphically in Fig. 2 . 9. The attraction from the liquid-
bridge mechanism, if it occurs , has the 1am- ~cst magnitude. 1-lowever , liquid
bridges may not be fo rmed between particles under the experimental conditions
of interest , as is discussed in Section h A .  Molecular attractive forces are
greatest for metallic spheres and smallest for sphe res coated with a nonpolar
dielectric having van der Waals molecular binding. Coatings having covalent or
ionic binding are expected to have intermediate force values with the range of
possible molecular attraction forces extending between (and perhaps somewhat
beyond) the two curves labele d molecular , metal and molecular, Lenard-Jones.

To avoid the large cohesive forces between metallic sp heres, the spheres
should be coated with a nonpolar dielectric coating having van der Waals binding.
The calculation in the previous section indicates that the coatin g need only be a
few molecular layers thick to saturate the forces so that Lh e attraction is dete r-
mined by the coating rather than the core. The liquid-bin d ing mechanism can be
avoided if the coating is hygrophobic.

The concern that electrostatic forces may become troublesome with dielec-
t ric coatings does not appe ar to be a problem. if the particles have the thermo-
dynamic equilthrium amount of charge , the electrostatic fo rces are negligible,
as is indicated by the bottom curve of Fig. 2 . 9. T~ie amount of charge req~ii red
to make the electrostatic force comparable- to the molecular force is unreason-
ably large, with large electric fields occurrin g near the pa rticle surface. It is
thought that such large charge s will only occur in exceptional circumstances
and, in general , will be pre sen t only on a few spheres of a large sample.

One of t~~~~ easiest coatings to appl y to the parti cle-s is an oxide coating.
Even though the tensile strength of oxides can be as large as metals , the sphere
binding force may bc smaller for oxidized sphe res because of the sensitivity of
oxide s to crystallographic orientation . If the sphc i -es are oxidizcd while in contact,
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an oxide bridge of large cross section may he grown between the spheres with a
subsequently la rge binding force. It will then be necessary to mechanically break
the spheres apart. Once separated , smaller attractive forces are expected to be
obtained.

Another simple method of reducing cohesion is to use spacer particles smaller
in size than the primary particles to avoid contact of the primary particles. The
spacer particles can be made of a material such as carbon that has weak binding

to the metal. Additionally because of the smaller size of the spacer particles, the
att ractive fo rce between a spacer and primary particles is smaller than between
two particles of the same size so that the cohesion of the mixture is reduced.
Spacer particles are expected to have little effect on the light scattering from

the dispersed mixture for two reasons: First, spacer particles are only a small
fraction of the total mass. Second, the size of the spacer particles falls in a range
where the scattering is inefficient , i. u., the scatte ring cross section is smaller
than the geometrical cross section. Should a spacer particle remain bound on the

— 
surface of a primary metallic particle , it should have little effect on the scatter-
ing of the primary particle. The maximum effect on the scatcering will occur if

the spacer is positioned at a local maximum in the electric field on the surface of
the primary particle. It could then resul t in damping of one of the multipole mo-
ments contributing to the scattering, but the effect should be small since several
multipole moments contribute.

Coatings that have desi rable propert ies from a molecular point of view are
many polymers and such fatty acids as stearic acid, Of the polymers, teflon is
desirable because it is hygrophobic and because it , along with othe r fluorinated
hydroc a rbons , has a small polarizability which yields small attractive fo rces.
Methods for depositing teflon from the gas phase by ultraviolet photolysis have
been published. 19 2 1 A poss thle problem with polymer coatings that could lead
to increasing binding is incomplete chain te rmination with loose bonds on two
particle s combining and fo rming a bridge between particles.

Low cohesive forces should be obtained with metallic spheres coated with an
aligned monomolecular layer of fatty acid.3’ 7,22 Stearic , lauric, and other fatty
acids are used as additive s in lubricating oils to provide boundary lubrication
under high-pressure condition s, vacuum conditions , or other situation s where the
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— - lubricating oil may be lost. The fatty acids consist of a backbone of carbon
atoms with a reactive carboxyl radical on one end. When applied from a dilute
solution to active metals such as copper or zinc, the carboxyl radical reacts
with the substrate metal forming an aligned monomolecular layer as is sketched
in Fig. 2 . 10. Such a layer will not be formed on noble metals such as gold and
silver. It has been noted that care is needed to get a reaction on aluminum, with
factors such as the degree of surface strain and amount of oxide present on the
surface influencing the reaction. If two surfaces coated with monolayers of fatty
acid are brought into contact , contact is made between the in ert, nonpolar tails
fac ing outward from the coated metals. The Lenard-Jones potential is applicable
for the interaction between the tails and very small forces of attraction should be
obtained. Such coatings can possibly be applied to small metallic spheres by re-
action from a volatile solvent such as benzine, although with semi-inert metals
such as aluminum more care may be needed to insure a reaction with the sub-
strate.
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Ill. LIGHT SCA1TERING FROM COATED SPHERES

A. Theory

Scattering from a spherically symmetric object is described with the aid of
Fig. 3. i.23 25 Incident radiation of unit intensity and polarized in the x direc-
tion propagates in the ~ direction to the particle located at the origin . The scat-
tered intensities at the position (r , 0, ç )  for the two polarizations in the 0 and

~ directions are

= ~~~ 1S 1( 0 )  
2 

cos2
~~ (3. 1)

4iT r
and

2 2
= 

~
-2- 1S 2 ( e )  sIn2 p , (3.2)

4ir r

where A is the wavelength. The amplitude functions S1 (0 )  and S2 (0 )  are

S1(9) = 
n~1 n

2
(~~-

1
1) a~ TT~ (cos O) + b r  (cosO) J (3.3)

= 
n~1 n ( n ± 1)  [ a T ~(cos 0) + b ~T (cos O ) ]  , (3.4)

where 
~n 

and are Legendre functions and where a~ and bn are Mie scattering
coeffi cients which are determined by boundary conditions on the particle surfaces.

The Legendre functions can be written in terms of associated Legendre poly-
nomial s of orde r n and degree unity :

ir~ (cosO) = P~~~(cos 0)/ sin0 (3.5)

and

r (cos9) = dP ~~~(cos8)/ d0 . (3. 6)

42 

— - 
— — 

-- ----- — --- -- —
~~

----
~~
—.

~~~~~~~~
. 

~~~~~~~ — --- - 
________________



F ~~~~~~~~~

-

~~

---- _ _

x
/

/

,
/

/

/

T

r/I II /

y

Fig. ~. 1. Radiat ion pro~) agat! I1g in the - direction is scattered from a spheri-
call y sy i l i  met i- ic object at the origin to the observation point ( r , 8, ~

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _  _ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~
--- .-

-~~~~
-_ _  

~~- - ~~~~~~~~~ - -~~~ - -~~~~~ --_ _

The associated Legendre polynomials can be expressed in terms of Legendre
polynomials, P~~:

(1 2
)
m/2 

dm P~(~~)/d~
m 

. (3.7)

— The Legendre functions have simple values for scattering in the forward or
backward direction . For these direction s, the values are

ir (O° )  = ~~( 0°) = n ( n + l ) / 2  (3. 8a)

in the forward direction and

~~ (l8 O ° )  = -T ( l81J°) = (-1) ” n ( n ± l ) / 2  (3. 8b)

in the backward direction , The differential scattering cross section per unit solid
angle is -

= 41T r2 l ( 0 ,q )  . (3.9)

The differential scattering efficiency is the ratio of the scattering cross section to
the geometrical cross section of the sphere. Dividing Eq. (3. 9) by ‘i~ a

2 for a sphere
of radius a and using the above values for the Legendre functions in Eq. (3.8) yields
the differential scattering efficiencies (or gains) in the forward and backward direc- 

—

tions:

2 -
~~ 1 2G ( O ° )  = (4/ a  ~ ( n 1  ~~ ~ (a ~~ bn ) I (3. 10)

and

2 2G( 180°) (4 /a ~ I n=l n + ~~- (-1) (ba - an ) 1 (3. 11)

where a is the sphere size parameter

a = 2 n a / A  . (3. 12)

-
i
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Similarly, simple expressions are obtained for the integrated efficiencies
for scattering, 

~ sca ’ and extinction ,

~ sca = (2/ a 2 )~~~~( 2 n + l ) [ 1 a  ~~~ ~b~~ 2 ]  (3.13)

and

Q = (2/a 2 ) E ( 2 n - i - l )  R e ( a  + b ) , (3. 14)ext n=1 n n

where Re denotes the real part . The extinction efficiency gives the total energy
lost from the incident beam to scattering and absorption. The absorption effi-
ciency is obtained by taking the difference between the extinction efficiency and
scatte ring efficiency.

It remains to calculate the Mie scattering coefficients , an and b~. These co-
efficients are associated with the various multipole moments induced in the sphere

by the incident radiation with a1 rep resenting the electric dipole moment, a2 -

representing the electric quadrupole moment, b1 representing the magnetic dipole
moment, etc.

For a homogeneous sphere having a complex refractive index m = n - i k ,
the Mie scattering coefficients are

,i ’ ( m a ) 4 ( a)  - n~~ 1(ma )~~~
(a)

a = (3. 15)n 
~/~ (ma)C (a)- f n ( 1n1a)C.i ( a)

and
-

b = , (3. 16)n

where primes denote derivatives with respect to the arguments of the functions.
The function is a linear combination of functions:

C n ~n + iX  (3. 17)

where and X n arc Riccati-Bessel functions of the first and second kind .
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In the limit of an infinite refractive index (perfectly conducting sphere), the
above expressions for the Mie scattering coefficients reduce to

a~ = 4) 1 (a ) / C ~~(a ) (3.18)

and

b = 4) (a)  / Cn (a )  . (3. 19)

Notice that these equations, also the various scattering efficiencies , involve only
the particle size parameter a = 2 iT a / X.  Hence parameters for perfectly con-
ducting spheres provide limiting values for testing results for spheres having
finite optical constants.

The Mie scattering coefficients for a coated sphere are more complex than
those of a homogeneous sphere because of the necessity of satisfying boundary
conditions at the coating-core interface as weli as at the outer surface. A coated

sphere having core radius a and total radius b is depicted in Fig. 3.2. Optical
constants in the core and coating are denoted by subscripts 1 and 2 , respectively.
Expressions for the Mie scattering coefficients given in Kerker 23 are incorrect.
The corrected coefficients are given by the determinantal expressions:

~rn 1~ ‘(m 2a) m 1\ ‘(m ~a) 
~~~ ~(mn 1a) 0

4 ( m 2a) \ ( m 2a) ~~ (m 1a) 0

0

~ (m 2 v) ‘< (m~ v) I )

m 14~’ (i-n 2a )  in 
1\

’(m
2
a) n

2~~~ (m
1
a) 0

>~n (m 2~~ 
-t ( m 1a) 0

0

~~ (m 2 L 1) ~~ (m 2 i.~’) 0 C ( v)
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REGION 1

REGION 2

~~~ .~.2. Coated sphere ha ving core radius , ~ i , and total radius , b.
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and

rn 
~ 

‘(m 2 &) ll
i\ 

‘(in 2a) ~~ (m 1a) 0

in n 1
~2a) 11~~\ ( m ~~~ ) m ,~~~(rn~&) 0

~ 1(m~~ ) \ ‘(m 2 Z,) (I

~~~(m 2 ti) \ n ( d 2~~ 0

b~ = (3.21)

m 14) ‘(m 2a) m 1X ‘(rn 2a) 4) ‘(m 1a) 0

m~s~~(m 2a) rnj \ (m 2a)  m 2~~~(m &) 0

~ ‘(m 2 v) \ ‘(m 2 L1) 0
L ( m 211) \ ( m 2 L.J) 0 n-i 2~~ (V)

where a = 2 i T a / X  and 1) = 2 i T b / X .

B. Practical Computational Consideration s

The calculation of the scattering efficiency of a sphere involves straightfor-
ward computation of the Mie scattering coefficients from Eqs. (3.20) and (3.21)
fo r a coated sphe re [or Eqs. (3. 15) and (3. 16) for a homogeneous sphere ] and
substitution of these coefficients in the desired scattering efficiency sum in Eqs.
(3. 10), (3. 11), (: . 13), or (3 .  14). Factors requiring consideration are: the number
of terms requi red in the- Mie - series , an efficient and accurate means of calculating
the Riccati-icssel function s, and modifications to the formulas to handle overflows
that occur with the large values of the refractive index for metals.

The numbe r of term s required in the Mic series is dependent primarily on the
ratio of the sphere radius to the incident radiation wavelength and to a lesser ex-
tent on the sphere refractive nik-x.  To determine the numbe r, the magnitudes of
the fi rst eleven scatte r in g coefficients for a perfectly conducting sphere of radius b
were calculated. The logarithms of these terms are plotted as a function ~i ~ h
= 2 ~~ / A in g~~. :~. 3 and . .  4. Prior to their initial approach to unit magn i tude ,
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the scattering coefficients are seen to increase wi th increasing kh  and v dec rease-
with increasing order. in the following calculations, the Mie series has been t run-
cated at ten terms. For sizes and wavekngths in the range of Figs. 3.3 and 3.4 ,
the truncation erro r in the Mic series is of the order of a11 or b11 as is indi-
cated by the dashed curves.

The above estimate of the truncation erro r shoul d also be approximately valid
for dielectric-coated metallic spheres in this size and wavelength region. An ex-
amination c~’ the scattering coefficients of a few dielectric-coated metallic spheres
reveals that , even with thick coatings of b/a = I . 4 , the r i a jor  differences from a
perfectly conducting sphere occur in the region near magnitude un ity . in the region
where the scattering coefficients are small , which determines the t runcation error ,
the coefficients are quite siinil i r .

Most of the numerical subtleties in the program are coi-~a ined in the algo-
rithms for calculating the Riccati-Bessel 1’1nCt i ~~fls  and their  de r i va r i v ~- ’-- . Rather
than using explicit algorithms for calculating all orders of the Riccat i-Be s~~ i func-

J tions and their derivative s, two of the orde rs are calculated e~ piicit ly with recur-
sion relations being usi d to generate the remain ing oruL r~ and all deri vatives.
Routines are needed only for the psi and e oi  functions since the zeta function is a
linear combination of these function s, as is gI v L- n in i-h . 3. 17).

Recursion relations for \ are stable ~ the foi~ ’are direction , so ~ 1 m d
are evaluated using

= sin z + c o s z/ z  ~3.22)

and

- cosz + 3 \ 1( z ) / z  , t - ~.23)

except for arguments having large imaginary part s as is discussed later. Use of
the recursion relation

( 2 n + l ) \ / z  - 

~n-l 
( 3 . 2 4 )

yields orders two through ten.
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Recursion relation s for are unstable in the fo~~ ard direction , so the
backward recursion relation

~n- 1 = ( 2 n + 1)  ~~ / z  - 

~n+1 (3. 25)

is used with starting functions and to gene-rate orders one through eight.

Derivative s are obtained using

- - ( n + 1)  
- 2~n+ 1 z ~~. 6

for orders one through nine and

= 

~n-i - ( n / z ) i ~ (3.27)

for order ten. These same derivative equations are also valid for when \ is
substituted for c .

Algorithms involving sines and cosines multiplied by polynomials in z 1 can
be written for the starting functions and ~~~~. However in contrast to Eqs.
(3.22) and (3.23) for and X 2 ,  the analogous algorithms for 4)9 and 

~lO are
inaccurate at small arguments, in addition to having difficulties at large imaginary
arguments as discussed later. For arguments greater than about twice the sub-
script, but not having too large an imaginary part, the most accurate algorithms
are:

- 13860/z 2 
+ 945945/z 4

- 162 16200/z 6 
+ 34459425/z h j sin ziz

- 11 - 990/z 2 ± 135135/z 4 -

- 4729725/z 6 + 3445~)425/z~~J cos z , j z  I~~~20.0 (3.28)

and

~io - I - I4~~ /z2 + 3 1 - ~3 1 5/ z 4 
-

L 

-t 310 I l 4 ~ 25/z 8 
- 6547290 75/z 101 sin z

- 55 - 2~~7~ H / t 2 
+ 2837835/z 1

- O i89 Ihou / z ° -t- 654729075/ z 8 cos z/z Iz  I ~ 2 U .0 (3.2 9)
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At sm all , the te ru i s  in ( Lie - i polynomials become vi - r’V large and
accuracy is lost in taking the d i f ference of nearly equal large numbers. In this

re-c ion it is iiiore accu rate to expand the sines and cosines in power series which

v u -id the over—a ll  power si ’ rue s:

n ± 1  ~~z
2 ( i~~2)

2

= l .3 .5 . . .(2 n ~~~l) ~ - IL (2n+ -3) ~ 2~~(2n~~3 ) ( 2 n + 5~ 
‘

(3.30)

The power series in Eq. (3. 30) is not used for all magnitudes z including those
greate r than 20 because it is inefficient and inaccurate due to the large number of
terms required in the series with large arguments. The cross-ove r point in accu-

racy between the two methods was determined by computing 
~~ 

and both ways
for values of z from ~~ = 10 to j z  = 30 and locating the point where they agreed

to greatest number of decimals. On the IBM 370 computer, run in double precision,
the results of the two methods agree to six places in the region around the cross-
over point. This six-significant-figure limitation near the cross-ove r point is the

major limiting factor in the accuracy of the scattering calculation in the region.

As mentioned above , there are additional difficulties in both Riccati-Bessel

functions for arguments having large imaginary parts, as occurs for those con-

t— ining the refractive index of a metal , In this case the sine and cosin e factors
in the L~I ccat i - Besscl function algorithms may have magnitudes greater than the

capacity of the computer. To avoid this difficulty , a large positive exponential

term from the imaginary part of the sin e and cosine arguments is factored out.

Conside r first the modifications required for a metallic core sphere having

a comp lex refractive index ni 1. Using the convention where- the imaginary part of
the rc f r ccr ~’.’~ index i~; negative, the function argument involving the core refrac-
I I V C  index is written

m 1a = u - i v  , (3.31)

where both u and v are positive . The cosine of this term is

[ i(u - iv)  - i ( u  — iv ) l  / - - -
~c o s ( m 1a)  = + c j ,12 . ( 3 . 32)
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Factoring out the term having the divergent exponential part yields

cos ( m 1~~) = 
[~

(v + iu )~ 2]  [i + -2v ~-2 iu ]  . (3.  33)

Similarly the sine of this argument is written

s t h ( m 1a)  = 
[C~~~~~~ / 2 ]  [(~ i) (1 - 

-2v e 2 i u) ]  ( 3 34)

Notice that the same divergent factor appears in the first square-bracketed
term of both Eqs. (3. 33) and (3. 34). Since the Riccati-Bessel functions are linear
in sine and cosine, this same term can be facto red from these functions , and their
derivatives, leaving the second square-bracketed terms in place of the sine and co-
sine. Referring to Eqs . (3.20) and (3.21) for the Mie scattering coefficients , the
argument m1a appears only in the- third column s of each determinant. By the rules
of matrix algebra, the dive rgent term can also be factored from the determinants.
When this is done, terms factored from the numerator and denominator cancel.
Thus, the divergent term is entirely compensated by replacing the sines and co-
sines in the Riccati-Bessel functions of the core sphere by the second square -
bracketed te rms in Eqs. (3. 33) and (3. 34). No other changes are necessary.

Additionally, it is desirable to expan d the capabilities of the computer program
to handle metal-clad spheres as well as dielectric-coated spheres. In this case it
is necessary to remove divergences occurring in Riccati-Bessel functions having
arguments m2 a and m2 t’. For convenience, only a real factor eV/2  is removed
from the algorithms, for examp le

cos (m ~a )  [ V
i 

2 ] [ h i m 
+ 

a 
(3. :35)

Functions involving the coatin g refractive index are found in the first two columns
of the dete rminants in Eqs. (3.20) and (3 . 2 1) .  In contrast to the core functions ,
there is -io common factor in each column because both arguments m2a and in2 y
appear in each colum n. However, when the determinants are expanded, there are
two over-all common factors 1/2 e-xp (~

) and 1/2 cxp (vb) f rom two arguments.
These common factors arc- made possthle by the zeros in the third and fourth
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column s. As with the core- iwict ions , th e -  d iverge -ru t factors from the numerators
and denominators of the sc a t t e r i n g  coeff ic ients  cancel , and it is only necessa ry
to re-p lace- the sines and cosines in the R ic ca t i— I~esse1 functions by terms simil ar
to the second squ a re—h r u cke tL -d term in Eq. ( 3 .  35).

W ith  the coatin g functions it ~s also necessary to remove the same factor
from the power seri es algorithm used for small arguments of the psi function
in order to keep functions computed from this algorithm normalized with re-
spc-ct to the other coating functions. Otherwise erroneous results occur in the
region where I m 2aj  < 20 .0 or m 2ii( < 20.0. Such a difficulty does not occur
with the- psi function of the core.

Besides the difficulties wi th  overflows in the algorithms, in some cases Un-
de rfiows occurred in products of functions in the expanded determinant. These
products were examined and were found to be ncgligthle with respect to other
terms in the expanded determinants. Hence , the underfiow difficulty was over-
come, with no loss in accuracy, by testing for an underfiow and by setting under-
flowing products equal to Zero .

A listing of the computer program is given in the appendices along with a
fu rther description of the imp lementation of the above equations.

C. Tests of Program Accuracy

Four se r ie s  of tests were made of the numerical accuracy of the program:
1) The i~iccat i-B esseI funct i on sub routines were compared with published tables.
2) A few points on the computer-calculated scattering curves were compared in
detail to a calculation on a hand calculator . 3) It was verified that the coated-
sphere formulas reproduced the homogeneous sphere results in the proper limits.

- 

- - 
4) Scattering results of the coated-sphere calculation were- compared with previ-

- 
- otislV published curves .

1. To test the accurac y of the Riccat i-l3cssel function subroutines, both
al gori thms used for small and la rge arguments were used to generate i~~ and

fo r a large numbe r of pu re  real and pure  imaginary a rguments. Recursion
relations we- ic used to gen era t e -  c1 through 4)

~~
. Since tables of Riccati-Bessel
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functions were- not available-, these functions were converted to sphe rical Bessel
functions in and y~ using

= z j~ (z) and \~(z) = z y~ (z) . (3. 36)

Values of spherical Bessel functions are available in Tables 10. 1, 10. 2 , and 10. 5

of Abramowitz and Stegun .26 Less extensive tests were made of the functions

since only a single algorithm is needed for these functions.

For large z the expressions for and are quite complex and the avail-
able table-s arc rather sparse- (only z = 20 , 20 i, 50, 50 i , 100, 100 i) .  Additional

tests ~VC r&’ made of these ftu ct ions by generating ~~ and 
~2 using back-recursion

relations from calculated values of and 
~~~~~ 

These values of and 
~2 were

compared to other values calculated directl y from their analytic expressions.
Values of and calculated by both methods agreed to six decimal places near

I z I  = 20 with improvement to ten places for ~z j  <10 or I z I > 30. This is the
— 

- 
same accuracy that is expected for the starting functions and ~~~ Hence be-

sides testing the starting function , these results indicate that no accuracy is lost

in the use of the recursion relations.

2 . At a few selected points on the scattering curves, the complete calculation

was carefully paralleled step by step by a tedious hand calculation. The agreement

of these calculations gives us great confidence in the over-all computational pro-
cedure. In case s where pro ducts of Bessel functions produced underfiows in the

computer , this calc ulation revealed that there were always additional non-ne-gl i-
gthle terms that summed with the underfiowin g terms so that there is no loss of
accuracy in setting the underfiowin g parts to zero.

3. As an additional test of the over-al l program, it was verified that the

coated-sphere program reproduced the homogeneous sphere results in the ap-
p rop n ate limits.  Besides providing a test of the formulas for the scatte r ing
coefficients , this procedure also tests the Riccat i-Be-sscl function subroutines
since the coated sphere coefficients involve more complex products than the
homogeneous sphe re coefficients . The limit , b finite and a = 0, is not a p rope r
homogeneous sphere limit of the coated-sphere fo rmulas. When the electromagne-
tic boundary value problem was solved at r a, solutions in the coating involve
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both psi and chi f unct iuns , but in th~ cure sphere only psi functions ar c allowed
since chi f unctions are- sin gular at the origin . I l e l u c e  t i m e  l im i t  a = 0 cannot be

taken since singular chi function s would be introduced into the- region containing
the ori gin.

The homogeneous sphere- limit was taken in the following fiv e -  cases:

• metal co re , vacuum e teu t i ng ,  b =

• metal core, arbitra ry coatings , b = a

• metal core , vacuum coating, b ~ a

• metal core, same metal coating, b ~ a

• dielectric core , same dielectric coating, b ~ a

In all limits the results agreed within the six-significant-figure accuracy of the
program.

4. There- are ilO P r e v i o u s  calculation s of scattering f rom a dielectric— coated
metallic sphere- available- for comparison to our results. Previous investigators
have approximated homogeneous metallic spheres by a perfectly conducting sphere.
Scharfman has studied dielectric-coated perfectly conducting spheres in the region -:
near ka = i.o.2 1 In the course of our compute r calculation, scattering from per-
fectl y conducting spheres of radii a and b was calculated for comparison to the
coated-sphe re results. Our calculations for a perfectly conducting sphere agree
with our own hand calculations , Fig. 4.27 of Kerker ,23 and Scharfm an.27 Our
coated-sphere results pre sented in the following section agree with Scharfm an 27

with the differences be ing - -;u ihi n the diffe rences of a perfectly conducting sphere
and an actual n u t a l l i c  sphere.

For comparison to a sp he re with finite optical constants, a dielectric sphere
coated with  the same dielectric was compared to the homogeneous dielectric

- - - -  23 - - -sphere curv e in 1-ig. 4. ~4 of be- ria r usmg the following parameters :

= m
2 

= 1.29 - i l .37 , b / a  = 1.4

1 hc-re was good agree -me -nt between our  calculated r i- suIt s  and the curve in
- 23R e i b e i .
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D. Results

Previous investigators have approximated scattering from metallic sph eres
by results for a perfect conductor. Scattering from coated perfect conductors has
been considered by Scharfman27 and by Rheinstein.28 By making this app roxima-
tion, the difficulties with large imaginary arguments of the Riccati-Bessel functions,
as occur with actual metals, are avoided. As is shown in the following, scattering
from a homogeneous, metallic sphere is well approximated by scattering from a
perfect conductor. However for examination for the effects of dielectric coatings,
it is necessary to consider actual metals since changes in the scattering for many
coatings are less than the differences between an actual metal and a perfect con-
ductor.

The results of four studies are presented in this section. First , scattering
from a homogeneous, metallic sphere is compared to that from a perfect con-
ductor. Second, a qualitative comparison is made of scattering from dielectric -
coated metals and dielectric-coated perfect conductors. The similarity of the
scattering of both types of coated spheres to scattering of a homogeneous, perfect
conductor is determined. Third, differences in the scattering of metallic spheres
due to various nondispersive , dielect ric coatings is investigated quantitatively.
Fourth, the eff ects of dispersion in the dielectric coatings are investigated by con-
sidering model coatings having a single Lorentzian -shaped absorption line. Scat-
tering from an actual metal oxide coating and from small, homogeneous dielectric
spheres is also calculated.

1. Homogeneous, metallic sphe res.

The infinite- refractive index of a perfect conductor is independent of the wave-
length. Hence, scattering curves which are plotted as a function of the particle size
parameter a = ka = 2 ira / A can be inte rpreted as being functions of changes in
either the sphere radius or i~ the wavelength. This duality does not occur with ac-
tual metals because of dispersion in the optical constants. Metallic spheres con -
side red in this section have fixed radii and a complex refractive index

m2(A 1 microns) -12.5 ± 3. 8 A - i ( 9 .9 + 5.68A )  . (3.37)
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The linear dependence of the - refractive indus  on wave-length in Eq. (3. 37) is a

good fit to hand book values aver the -  wavelen gth range of inte rest. In this region
the reflectivity of the metal is at least 0. ~78, so that the perfect conductor is cx-
pc- -:ted to be a good app roximation .

Scatte ring from such a metal is compared to a perfect conductor of the same
radius b in Fig. 3.5, where scattering from the metal is denoted by the solid

curve and the perfect-conductor results are given by -
~
- symbols. The qualitative

agreement is good with the oscillations in the two curves being in phase through-
out the kb range from zero to four given in the figure. The magnitudes of the

scatterin g agree in the region from kb equal to zero to the first peak. After the
first peak the amplitude of thC oscillations in the metal curve are greater than
those in the perfect-conductor curve. At the two minima, the two scattering
curves diffe r by app roximately ten percent. The mean difference in the region -

between the first two peaks is four percent.

There appears to be no simple method for estimating the quantitative dif-

ferences between the scatterin g from an actual metal and the scattering from a
perfect conductor without doing the difficult Mic-theoxy calculation. Notice that

the app roximately ten percent difference in tile t wo curves at the minima is much
greater than the app roximately two percent difference in inc bulk reflectivities.
At other points , the two curve s cross and there is no difference in the scattering -

at these crossing points .

2 . Qual itative results for coated metallic sph eres .

Scharfman 27 has investigated the scattering e f f i c i enc y  in the ka region around
the first peak of perfectly conducting spheres coated with nondispersive dielectrics.

For high-index coatings with refractive indices greater than approximately 2 .5, his

scattering curves have a first  peak at nc -nr l y the same position and of nearly the

same magnitude as a perfectly conducting sphe re of the same total radius , b. This
result is somewhat surprisin g in view of the low reflectivity of the bulk dielectric
mate rial. Another l imit is the limit of a vacuum coatin g (refractive index equal
unity) where the scattering must  approach tile - results for an uncoated sphere.
This limit is approximately valid for thin coatings having refractive indices less
than 1.6.
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Fig. 3. 5. Comparison of tile scattering from a perfectly conducting sphere

(symbols) and a metallic sphere (solid curve).
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Metalli c sphere-s coated with nondispers ive absorbing and t ransparent
dielectrics were examined to find whether similar qualitative rules are appli-
cable in this case, and whether the rules are valid at other maxima and minima
besides the first peak. This study was done graphically by preparing two plots
of the scattering efficiency of the coated sphere which has core radius a and
total radi us b:  In the first plot the scattering of the coated m etallic sphere is
normalized to the total geometrical cross section , i~b2 , and plotted as a solid
curve as a function of kb. For comparison , the scattering efficienc y of a per-
fectly conducting sphere of radius b is presented as a series of + symbols on
the same axes. In the secon d plot , scatte ring from the coated metallic sphere
is normalized to the core- cross section , ira 2 , and plotted versus ka. Compar-
ison in this case is m ade to a perfectly conducting sphere of radius a .

For the investigation of nondispers ivc , transparent coatings , a two—dim e-n—
sional grid of coating thicknesses and refractive indices was used. At each of the
three radius ratios , b/a = 1.04, 1.004, 1.0004, the scattering was calculated for
the set of refractive indices m2 = 1.2 , 1.35 , 1.5, 1.75 , 2 . 5, 3.25 , and 4.0. Two

- - -  - 2 2 -plots of the scattering efficiency, normalized to ira and i rb , are presented in
Figs. 3.6 to 3. 19 for the full set of refractive indices and the single radius ratio
b/a = 1.04 .

Consider first the scattering curves with b/a = 1.04 plotted in terms of the
larger radius , i .e. , kb abscissa. For the coating refractive index m2 = 4 . 0

shown in Fig. 3 . 6, the curve s for the coated , metallic sphere and the perfectly
conducting sphere are - in— p hase, having maxima and minima at nearly the same
p osit ions . lime curves diffe r in amplitud e- wi th  the m agnitude ot the coated , mc—
tal l ic  sphere curve be ing greater than ti me i~e- r iecil y conducting curv e it the
maxima and smaller at the minima. The dit le-re -nce -s in amplitude increase
with increasing kb.

As the coating refractive index decreases, the amplitude of the coated,
metallic sphere scatterin g curve decreases and the period increases. With a
coating refractive index of 1. ~ shown in Fig. 3. 14, the magnitude of the first
peak of the coated sphe re h a s  decreased to the poin t where it  is comparable to
that of the perfect conductor . At kb values beyond the first peak, the- coated
sphe re curve still has a larger amplitude than the perfect conductor curve.
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I: g. 3. ~~. Scattering from a coated metallic sphere normalized to the total c ross-
sectional area (solid curve) and scattering fro m a perfectly conducting sphere of
radi us b (symbols).
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Fig. 3.7. Scattering from a coated metallic sphere no rmalized to the core
cross-sectional area (solid curve ) and scattering from a perfectly conduct-
ing sphere of radius a (symbols).
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Fig. 3. 9. Scattering from a coated metallic sphere normalized to the core
cross-sectional area (solid curve ) and scattering from a perfec tly conduct-
ing sphere of radi us a (symbols).
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Fig. 3. 11 .  Scattering from a coated metallic sphere normalized to the core
cross -sectional area (solid curve) and scattering from a perfectly conducting
sphere of radius a (symbols).
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A slight shift to larger kb values is noticeable in the coated sphere curve peaks
with respect to the peaks of the perfect conductor .

At the still smaller coatwg r efractive index of i . 2 shown in Fig. 3. 18, the

shi ft in the kb values of the- peaks is much more noticeabie-. The magnitude of
the first peak has decreased fu rther until it has a smaller magnitude than that
of the perfect conductor. The second peak now has a magnitude comparable to
that of the perfect conductor.

These scattering results for a refractive index of 1.2 are plotted in terms
of the core radius a in Fig. . 19, instead of in terms of the total radius b as
was done in previously considered curves. The positions of the peaks in the
coated sphere scattering curve in this figure agree well with those of a per-
fectly conducting sphere with radius a .  When the amplitude is normalized to
the core radius a as it is in this fi g-ure, the coated sphere curve has a larger
amplitude than the perfect conductor curve.

Similarly , curves for coatings having refractive- inc ~es 1. 5, or greater,
are plotted in terms of the core radius in Figs. 3.7 , 3.9, 3.11, 3. 13, and 3. 15 .
The position s of the peak s in the coated sphere curves and in the curves for a
perfectly conductin g sphere of radi us a , shown in these figures , are in poo rer
agreement than they were for a perfect conductor of radius b shown in the previ-
ous figures. In addition , the magnitude of the peaks in the coated sphere curves
are still greater compared to the perfect conductor peaks than they were in the
previous fi gures.

l-Ience , scattering results for coated sphere s, analogous to those of
Scharfm an ,2 ’ are obtained for the larger range of kb values including the
fi rst three peak s in the scattering curves: For large values of the coating re-
fractive index , the oscillations in the scattering curve for the coated sphere
are approximately in-phase with those in the scatte r ing curve of a perfectly
conducting sphere having a radius equal to the total radius of the coated sphere.
For coating refractive indices less than approximately 1.6, the scattering is
hc-ttc r described by a perfectly conducting sphere having a radius equal to the
core radius .  In both cases , the amplitudes of the oscillations in the scattering
curves of the coated spheres arc greater than those of the perfectly conducting
spheres.
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This qualitative rule remain s valid with thi nner coatings where similar , but
much less p ronounced effects are sc-un in the scattering plots. To illustrate the
magnitude of the effect with thin coatings, scattering plots are presented for the
radius ratios 1.004 and 1.0004 and for only two coating refractive indices of
1.75 and 4.0 at eac h coatin g thickness. These curves are given in Figs. 3.20 to
3.27. Since it is difficult to see- differences in the curves at these thicknesses,
the si milarity to the previous case of b/a = 1.04 was verified from the com-
puter printouts.

including even a large amount of nondispersive absorption in the coating has
very little effect on the qualitative behavior of the scattering curves. Absorption
lines with dispersion are discussed in Section 4. To investigate- the effect of con-
stant absorption in the coating, the- coating ref ractive - index

1112 
= n-i~ — i 0. 1 (3. 38)

was used with b/a = 1.0012 and with the set of values m~ = 1.2 , 1.35, 1.5 ,
1.75 , 2 .5, 3. 25 , and 4. 0. The scattering curves are qualitatively the same as is
expected for nonabsorbing coatings having the same magnitude refractive index.
Notice that the imaginary part of the refractive index given in Eq. (3. 38) implies
a la rge absorption coefficient. With the constant imaginary part of 0. 1, the ab-
sorption coefficient varies from 220 cnf 1 at kb = 1 to 3000 cm~ at kb = 4.

With coating thicknesses and refractive indices large r than those used in the
above two-dimensional grid, the scatterwg begins to depart from the simple anal-
ogies with perfectly conduct ing spheres. The fi rst evidence of anamalous results
for high— index , thick C t ) a l i i i g s  can be- seen ii i  Fig. 3.6 for b/a = 1.04 with m2 = 4.0.
In this figure the scattering at the thi rd peak is as large as that at the second peak
in contrast to the decreasing scattering amplitude with increasing kb of the per-
fectl y conducting sphere. IS the radius ratio is increased still further to b/a = 1. 4
with m2 1.5, the- magnitude of the third peak becomes greater than both the first
and second peaks. This case is plotted in I - ’ i gs. 3.28 and 3. 29 where the fourth
peak is seen to have a still greate r magnitude. Neverthele ss , even wi th thi s very
thick coating , there still is some qualitative agreement with a perfectly conduct-
ing sphere of radius h in the kb regi on of the first two peaks in Fig. 3.28.
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At kb values  greater  than those p resented in Fig. 3. 2 ?~, the scait er iii~
curve has a ser ies of sharp spikes \ \ a i c j l  become n cr .:nsu~~ i - . narrow and in-
crease in magn itude - as kb inc r case- -~. Ith eLnstc n ’~~ has investigated this
phenomenon for perfectl y conducting core spheres coated with a nondispersive
dielectric. In his ana ly s i s  the anomalousl y large value of the scattering a~ the -
resonance spikes is attributed ~o constructive interfe rence in “ c reepin g waves”
trapped in the coating. I-or small kb vaiu~ .s \i1 U ~ tiun coatings of low refractive
index , the “ creeping wave-s’ are considerably attenuated as they propagate around
the circumfe rence of t h e  spnere and , consequently, lave little effect on the scat-
turing. The creeping waves begin to Lnfluencc the scatte ring when the wave-guide
condition s

7 
( ( n - 1 ) ~r TE mode

- i ( m ~ - i )  (3. 39)~a ~~ I
(n  - TM mode

a re ao 1 , wIi~ re n is a~i integer . If the coating thickness and rCIr aci- Ivc index are
held constan t , once kb Ilas inc leased above the value- requircd by (3. 39) to turn
on a mode-, t h e  creeping wave ~u~alv si  s predict s that tile Q of the resonances in -
c reases ~~iIh increasing kb. fliis rc Suits in increasingly s1ioi ~ spikes in tile
scattering with increasing kb . Parameters or this bc~iavior are outside the
present range of interest and refe rence is made to itheinste in28 for details.

3. Quant itat ive results for nondispers ive coatings.

Conside r scaItc-rrng plots similar to those presented in terms of the core
radius in the previous section , where now scattering from the uncoated , metal-
lic sphe re , rather than a perfectly conductin g sphere , is given by -~- symbols.
Since the metallic sphere- is well approximated by a perfectly conducting sphere
of the same radius , the CUr v -s are not repeated. The qualitative behavior re-
main s the same as iii Ute  previous sLct ion with the scatterin g curve for tile
coated sphere havmg large r nLc-~ima and lower minima than the curve for the
uncoated , metallic sphere. It is desired to describ e the d ifferences between
the curves (j U ~u t t i t a t i v + - lv .  lo  do this , one complete oscillation m tile curve is
considered , say between the f ir s t  two peaks. This region from ka = 1.02 1 to
2 . 337 is divided into N points and the root-mean-square percent deviation
i~RM S% )  is calc ulated:
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wh ere (~~ and Gm 
are- thic \ ‘olLa-a of the scatteui -g 1al I C  coaten and ancoated me-

tallic s11h ies a to nUl p t+uu , i-e-spec~iv c-1v. Us~ of ih~ R~.1S ~ deviatio n avoicb~ dif -
t i c u i t t e s  \vJti~ t h e Si is  of th~ de~’ :uian s wncn tlii ’ curves  cro — -~.

U sing the t~vu-d ine-nsion al gr~u of coating r€ - 1r activ~. indice s and thicknesses
given in the ~ reviou s sect ion , a r\-a .01 Un ~~-iS - 

~ dc vi lion arc given in a. .30

for each th ickness as a funct ion of t1( ¼ . O i t1fl~ re - Imact iv e - dcx. in t in  limit 12
-~ 1. 0, n i l  at the CUrVes intia t go to OcrO ( l e V L0 t I t h ~ s flce tilt S l i m i t  c - - i ~ I L S ~ u iI d S to
a Vac uum coating. I n  r - - ~ gre a te r  th ou ap~ euxi aa rclv tV a, he- CU FVC S be-con ic

nearly ((at. I lowever, t i l t , values in t~~ ( ( i i i  r egion i re  not the a -‘‘;nIp t o t i L ’ values
for  an I n f in i r l -  ( -~ r a ct i  VI index, n. c-. , te I in - - -  r+ - t il e C at+ -d sphe re I) eCOiYi io s

a perfectly con dU ct ing  sp la re- 01 FaUlUs D . Fhie dasilL u lines at t i u -  right—han d

side of the figure L iVe- the - ~ sy i i t p t a t c V ilie S for the VOIiO U S iicknesse s. 3lic

a t t ~ ci line at 4 . 7~ is the asvrnp tooc l i m i t  ul’ a co a t + n g I inv i i i g  an infuli t e - rcfrac-
t iVc  odex and zero t h i c~~ie-~s, i .e. , 11 i l m i t i l i g  de- v~ii t t ~ i~ b~. -~~vcc-n a metallic
sp here mid a pe rfectly cunum i~~~~ ap tie ot ihc a i a u  r adtus . Notice that with
b/a 1. 14 and m2 4 . 1) , the R*lS ~ d~ - t~ - - :* rreatL - - than its asymptotic

value- n - I -atra st  to th e cu 1~-es f o r  t I mner coaluigs iV ma aae below th eir asvmp-
tv -t i c l im i t s .  1’his differenc e is a i-esu l t  a! the ~ib~a 1 r acily large- cross sect ions

generated b~ the v.av ~ gi. i i U  mechaui is n - spilcrc’s ~-ath th ick I a r i a 3 . . A similar

~ 
nhan cun ient iii a v also occur fu r n . >~ 4 in t i - c  curves  for  thinner c o a t in gs .

(‘or dun coatings with radius ratio s less i n n  aho ut 1. 01)4 , the RM S ~~ , dc vi-
at iofl  I W It IU Ii lifl( pi lCeilt  ul  being m ica r the coating th~cknuss  at a fixed
coat ag r ci ir act -  \ e-  fldcx . h i s  line-ar rel at  i U f l  ship is host at larger thicknesses.

1- o r  t ,-n i i  Ic , l in ea r  ext rop e-i t -an to the b/a - 1. 04 c u r v e -  from tile b/a = 1.004
;uid I . di )i 14 e U r V u 5 i  p r e -di ets  vaiue~ that arc  t , h i t -~ e s ret-nt too low at 1112 = 1. 2
and nua-te en pt rc cnit t t i n  lO\v i-- i 111a *.

H-c curv e with b/a 1 .0012 In FLg. 3 .30 1 -r~ sents ilic- RM S % deviation of
fl l ) I i U l i ’3 e 1 5i \  , ahsod) if lg  1 nat tugs hav in g comp i x  r efract ive indices given by

i v - . (3, 3-~. Even wnt :hi l i t , -  I 
~~~~~~

- ,ibs i an ~an eoethci~-nt s of thcsr  coating-i, the
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RMS % deviation agrees very well with values for nonabsorbing coatings having
the same magnitude refractive index , except for small differences at small mag-
nitude indices . The dashed curve gives values for a real refractive index obtained
by extrapolation from the b/a 1.004 and b/a = 1.0004 curves.

In Fig. 3.31, the data v-i Fig. 3.30 have been cast into level contours of the
RMS~~ deviation s as a function of tile coating thickness, b-a , and the magnitude
of the refractive index. As the coating refractive index app roaches unity , i.e. ,
a vacuum coating, the curve-s of constan t deviation approach infinity indicating
that an arbitrarily thick vacuum coating produces zero deviation . Thc- determina-
tion of asymptotic values of the error contours in the limit of an infinite refrac-
tive index would require another set of cornpulcr calculations and hence has not
been evaluated . This limit corresponds to differences in the scattering between
metallic sphere-s of radius a and perfectly conducting spheres of radius b .

4. Disper sive coatings.

Optical constants of actual solid mate rials have absorption bands and dis-
persion , rather than tile constant absorbing and nonabsorbing refractive indices
considered in the previous sections. These absorption bands can be con ven iently
represented by a distrthution of Lorentzian absorption lines , the use of which

guarantees the- correct dispers ive behavior as required by the Krarners-Kronig
relation s. The Reststrahl absorption bands of many ionic solids can be crudely
approximated by a single absorption line of large line-width. A bette r model in
this case is to allow the relaxatior’ frequency of the- Lorcntzian line tc- be a func-
tion of the radiation frequency. With electronic transitions and with lattice ab-
sorption in nonpolar solids , the absorption bands consist of a superposition of
many absorption lines of narrow line-width.

I-hence as a model calculat i on app licable- to many materials h\ superposi-
tion, the effect of a single Lorcntzian absorption line on the scatterin g is con
side red. The dielectric cons;~ant for a Lorcntzian line as a function of frequ~ -

is

( E () 
-

€ (w) = 2 2(u~~~~W ) + icc r
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